skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kueppers, Lara M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Summary Vegetation demographic models (VDMs) endeavor to predict how global forests will respond to climate change. This requires simulating which trees, if any, are able to recruit under changing environmental conditions. We present a new recruitment scheme for VDMs in which functional‐type‐specific recruitment rates are sensitive to light, soil moisture and the productivity of reproductive trees.We evaluate the scheme by predicting tree recruitment for four tropical tree functional types under varying meteorology and canopy structure at Barro Colorado Island, Panama. We compare predictions to those of a current VDM, quantitative observations and ecological expectations.We find that the scheme improves the magnitude and rank order of recruitment rates among functional types and captures recruitment limitations in response to variable understory light, soil moisture and precipitation regimes.Our results indicate that adopting this framework will improve VDM capacity to predict functional‐type‐specific tree recruitment in response to climate change, thereby improving predictions of future forest distribution, composition and function. 
    more » « less
  3. Abstract Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground. 
    more » « less
  4. Abstract Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low‐elevation provenance had more than three‐fold greater recruitment to their third year than seeds from a high‐elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low‐ and high‐elevation seed sources across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long‐term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low‐elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change. 
    more » « less